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Abstract—The next generation power grid de-
mands high reliability, robustness and real time com-
munication of control information related to power
flow in the grid. This paper proposes a probabilistic
framework of smart grid power network with statis-
tical decision theory to evaluate system performance
in steady state as well as under dynamical case and
identify the probable critical links which can cause
cascade failure. Proposed model for cascade failure
prediction has been tested on the IEEE 30 bus test
bed system. Simulation results validated critical links
in probabilistic model of power grid system with de-
terministic power flow analysis. The key contribution
of this paper is, performance evaluation of smart grid
power network and identification as well as prediction
of critical links which may lead to system blackout. In
addition to this, a graphical model has been developed
using minimum spanning tree to analyze topology and
structural connectivity of IEEE 30 bus system.
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I. INTRODUCTION

The smart grid is an integration of communica-
tion infrastructure over existing power grid infras-
tructure with real time communication of control in-
formation like normal grid operation or information
related to any abnormality/line tripping in the grid.
A review on bidirectional communication/power
flow was given in [1]. The Data control man-
agement unit interface communication and power
network via Phasor Measurement Unit (PMU).

A PMU in a smart grid collects online as well
as offline data from wide area network and syn-
chronizes voltage and current measurement with a
common time reference. PMU measurements are
converted to phasors at different nodes with same
time space coordinates and use these information
for state estimation, error detection, control and out-
age monitoring of smart grid. A detailed survey of
PMU placement technologies in smart grid were ex-
plained in [2], [3], [4], [5], [6] thorough description
of the optimization methods. The load flow data
from PMU need to be modeled and analysed via
deterministic and probabilistic load flow models.

Information from load flow models helps further
in analysis and prediction of cascade link failure.
A probabilistic load flow model was proposed for
stability of power system by [7] in terms of density
function. The paper compares the results obtained
probabistically with those that would be obtained
deterministically. DC power flow problem, using
sensitivity coefficient of each line was probabilis-
tically analysed in [8]. Simulation results indicate
that, the changes in nodal data influence the power
flow in the transmission line.

A probability theory used by [9], to solve
load flow in power grid. The method applies two
Maximum Entropy methods and a Gram-Charlier
expansion to generate voltage magnitude, voltage
angle and power flow probability density functions
based on cumulant arithmetic treatment of lin-
earised power flow equations. A model of cascading
failures in interdependent network systems was
developed in [10] and simulation results showed
that at critical load the average cascade size give
essential information on the system vulnerability
towards cascading failures. The impact of network
uncertainties in power systems were modeled in
[11], [12] using distribution factor concept with the
Monte Carlo simulations for computation of prob-
abilistic load flow. Probabilistic load flow method
considering random branch outages as well as un-
certainties of nodal power injections were simulated
in [13] to solve the discrete distribution part of each
state as well as output variable after contingency.

This paper is an effort towards modeling and
simulation of power grid for performance evalua-
tion of load flow under steady state (normal)case
and dynamic case (line tripping) with less compu-
tational complexity. Proposed probabilistic frame-
work predict critical links which can lead to black-
out and inform data control management unit of
smart grid for further action. The paper is orga-
nized as follows: Section II presents deterministic
and probabilistic load flow model. The statistical
decision theory is explained in Section III.
Section IV gives graphical modeling and perfor-
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mance evaluation of IEEE 30 bus test bed system
in normal grid operation and under cascading of
line failure with simulation results conclusions are
presented in Section V along with future directions
for research.

II. POWER FLOW MODEL

The purpose of power flow model is to study
and analyze the performance of load flow both in
normal operating conditions and under fault (line
tripping) condition.

A. Deterministic load flow model

Power grid is a complex network where generator
and load buses are represented as a node and
transmission line, transformers as a link. If P and
Q represent real and reactive power of the system
[14] then real and reactive powers injected into the
it" bus (node) are

Pi(Real power) = Re(V;* Z YieVi) (D)
k=1

Q:(Reactive power) = —Im(V;* Z Yie Vi) (2)
k=1
where, Y;,= line node admittance matrix
V; = Voltage at the i*" node
Vi, = Voltage across the k'" line
AC load flow equations are non-linear and com-
plex hence, computational complexity is more with
AC load flow analysis compare to DC. In the
DC load flow model the net power injected into
a node is real and equal to the total amount of
power flowing to neighboring nodes through links
(transmission lines or transformers) is

7(0; — 6;)
where, 0; , 0; is the voltage phase angle at node i
and j and X;; is the series reactance of the link
between nodes ¢ and j. Deterministic load flow
models finds line flow under a specific operating
condition and good for load flow analysis in steady
state but analysis will be difficult in dynamical case
because of the load variation in the system.

P, = 3)

B. Probabilistic load flow model

The load variations in power grid like node
voltage, current and power flow in transmission
lines are treated as random variables in probabilis-
tic model with normal distribution, hence, mean,
variance, covariance and correlations for the nodal
data can be easily calculated. Hence, probabilistic
model is capable of predicting cascading failure.

A probabilistic load flow model has been de-
signed in this paper on the basis of time instance
load model and time period load model. The time
instance load model (stochastic load flow) for time
instant ¢ is require to predict cascading and the
time period load model over a certain period 7'
(probabilistic load flow) is used for calculation and
analysis of load duration curve, mean, variance,
probability density function (PDF) and cumulative
distribution function (CDF). Time instance load
model of k'™ transmission line of node i for (x,
t) can be described by a Gaussian distribution [15]

Wi = pi + 0 * Y “

where, w; = load flow sample value of line node %
w; = load flow predicting value at time ¢

y; = variance of load distribution of node

o; = standard deviation of Gaussian distribution

Parameter o; describes the degree that the
real load value w; deviates from the predictive
value p; of node i at time ¢ and it is used to modify
the forecast load value for the node i. Time period
load model over a period of time T of a node i
described by Gaussian distribution (PDF and CDF).

1 _@=w?
PDF = f(x) = e 202 Q)
oV 2T
CDF = F(z) = — /t ~e e )
= ) = —— e 20 T
oV2T J_so
where,

o = Standard deviation of random variable
o2 = Variance of random variable
x = Random variable (% power loading in line)
1 = Mean value of random variable

The PDF can be observed as the probability that
the load is larger than or equal to x i.e. distribution
of the load. The probabilistic load model describes
the probability that the load will exceed installed
capacity (IC) under dynamical condition. Proba-
bilistic modeling of power grid considers power
loading of each transmission line as a random
number with uniform distribution then compares
this random number with forced line outage rate
q (assume 80% of IC) which is used further to
determine whether transmission line state is in
failure or running state.
Let, C' = Transmission capacity of load line
q = Probability of failure capacity (80 % of IC)
X = (1 — q) = Available capacity
p(X) = Probability of available capacity for x;

pX =) ={, " I )

:EiZO
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The relative CDF is

p(X =) ={; ¥ (8)

q, z;=0

For cascade failure analysis it is more convenient
to use outage capacity compared to available capac-
ity. Hence, if X = outage capacity, then probability
of line outage capacity of a system is:

X )= {22 ©

x;=c

As shown in (9) probabilistic load flow model
should be used as two state transmission line system
to predict whether a transmission line is in running
state or failure state. Based on probabilistic load
flow model a statistical estimation model has been
designed.

ITI. STATISTICAL ESTIMATION FOR
PREDICTION

Assume power grid having N transmission lines
with available capacity C = (C4,Cs,...,C,,) and
can be characterized as a set of mutually exclusive,
discrete states S = (51, 59, ..., S, ) at any time 7.
Each state can be either the normal state or tripping
state but not in both simultaneously. Thus the states
are mutually exclusive and deterministic. States
of power system are determined by samples from
the probability distribution functions of percentage
power loading in transmission line according to
two point distribution functions as shown in (9). A
statistical estimation, as shown in Fig.1 is used to
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Fig. 1.

test whether a transmission line is in running state
or in failure state. Initially at base case, suppose
there are N transmission lines in power grid with
initial load capacity and flow which is Gaussian

distributed from [lin, lmaz] With 95% confidence
level (CL) and 5% level of significance (LOS). 5%
(LOS) is a chance for failure or rejection of test.

The decision rule is set according to confidence
level boundaries (estimated range of values with
specified probability of containing true values).
Upper Bound and Lower Bound (UB, LB) for
confidence intervals are computed from sampling
distribution. The test rejects the estimated value
when it lies outside the computed confidence inter-
val for the parameter. If the random variable (line
flow data) fitted in the Gaussian distribution (95%
CL, 5% LOS) and CDF < 1, indicate normal state
whereas CDF = 1 indicate blackout. For predic-
tion of cascade link failure correlation technique
is used to understand clearly the interrelationship
between line loading growth patterns.

IV. PERFORMANCE EVALUATION AND
SIMULATION RESULTS

As shown in Fig. 2, IEEE 30 bus test-bed sys-
tem is used for deterministic load flow as well
as verification of probabilistic frame work. Test

Fig. 2.

IEEE 30 Bus Test system

bus system consists of 30 buses, out of which
6 buses are generator bus and 23 are load buses
with 42 transmission lines consisting of 289.1 MW
generation and 283.4 MW load flow capacity of
transmission line (standard data).

A. Graphical Model of the Grid

The topology of the power grid network can be
represented graphically by allocating generator and
load buses as a node (V, vertices) and transmission
lines, transformers as a link (E, Edges). Graphical

model (G) is represented as
G=(V,E,W) (10)

Weighted directed tree T = (V, E, W) of the
bus along with maximum capacity link connectivity
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(red color link) is shown in Fig. 3 where W is
the weight function (line admittance) for the edges
(transmission lines). The number across transmis-

Fig. 3.  Minimum spanning tree of IEEE 30 Bus System
sion line representing respective line numbers and
values inside the bracket indicating respective line
admittance values. Minimum admittance line car-
ries maximum power flow. One of the algorithms
for calculation of connectivity and maximum power
flow in the transmission lines is the Minimum
Spanning Tree (MST) algorithm which presents
local to global connectivity and feasible solution
of power flow in the grid. MST of test model
using Kruskals method is shown in Fig.3 where red
lines showing minimum admitance or maximum
load bearing line starting from slack bus (node 1)
to all buses .As MST contains all (n — 1) nodes
so there is a possibility or existence of cascade
failure. Spanning tree model also used in [2], [3],
[4], [5], [6] for optimal PMU placement. The PMU
placement on the buses for the IEEE 30 bus system
as per [16] are bus number 2,4,6,9,12,10,15,25, and
27. Performance evaluation of the test system for
this paper based on the normal operating condition
and under consideration of line tripping.

B. Performance evaluation of load flow

The base case (Case-1) as shown in Fig. 4, is
a graph of percentage power loading in lines as
a function of line number under normal working
condition. Fig. 5 is a Gaussian distribution plot
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Fig. 5. Casel- PDF as a function of Transmission line loading

where as in Fig. 6 CDF displays a cumulative
probability plot of the load flow data. As shown in
Fig. 5 PDF curve is Gaussian and in Fig.6 all the
data is properly fitting inside the confidence level
hence all lines are healthy at the base case. As-
sume the transmission line capacity or force outage
rate (FOR) is 80% of IC for analysis of load flow
under consideration of line tripping. Cascading is
initiated by exceeding line load on selected line (for
example highly loaded line) and if load exceeds to
FOR, transmission line will trip. Probability of next
tripping line is calculated using statistical decision
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Fig. 6. Casel-CDF as a function of line loading
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Fig. 8. PDF plots of line data with sample mean and variance.

theory (Hypothesis testing).  Performance evalu-
ation of test bed system under dynamic condition
is initiated by tripping of line L25 (between node
10 to 20), as shown in Figs. 2 and 3. Tripping
of L25 redistributed the power flow in the grid.
Redistributed flow and corresponding deterministic
data are shown in Fig.7 and Table II for Case
2a. Accordingly new probability distribution with
sample mean and zero mean are shown in Figs.8
and 9 (Case 2a). New statistical data (estimated
mean, variance, CDF and estimated co- variance)
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Fig. 9. PDF plots of line data with zero mean and variance.
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TABLE I
PROBABILISTIC LOAD FLOW ANALYSIS
Trip- | Mean CDF, | LB / | Estimated Line
Case| ped (w), line UB covari- | trip-
line Stan- load- ance ping
dard ing prob-
devi- abil-
ation ity
(o)
Base | p=31.97| 0.9834| 0.9424| =539 | all
Caset Case | 0=15.05| at /0.9964 0=2.80 | lines
1 64% are
healthy
L25 p=34.63 | 0.9855| 0.9474| p=8.55 | L27
Caset o=18.95 | at /0.9970 o0=4.44
2a 75%
L27 p=38.47 | 0.9906| 0.97 pn=11.03| L38
Caset 0=21.53 | at /0.9984 ©0=5.72
2b 87%
L38 p=51.71 | 0.9999| 0.9921| ©=59.46| Black-
Caset 0=49.95 | at /0.9992 0=30.83| out
2c 210%

from Figs. 8,9, and 10 for case 2a are updated in
Table I. According to hypothesis testing probability
of next tripping line is L27.

Tripping of L27 (between node 10 to 21) re-
distribute power flow, accordingly deterministic as
well as probabilistic data changed which is reflected
in Table 1 and II. Deterministic load flow in case
2b (tripping of L27) is shown in Fig. 7. Fig 8 is
a Gaussian distribution (Case 2b) about its sample
Mean and increased variance whereas zero mean,
variance for the case 2b is plotted in Fig.9. Cor-
responding CDF with 95% confidence bond and
5% level of significance (Case 2b) is shown in
Fig. 10. As CDF plot is fitted under LB and UB
with the CDF value less than 1, test shows success
and declares probability of next tripping line is L38
(highest CDF).

Case-2c in Figs. 7,8,9, and 10 is a contingency
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TABLE II
DETERMINISTIC LOAD FLOW ANALYSIS

Tripp- | Highly FOR | Available| Line
Case | ed loaded (Q Capac- Trip-
Line Line ity ping
(1-q) Proba-
bility.
Case- | Base | Under IC Under] Full All
1 Case FOR lines
are
healthy
Case- | L25 L27(74.2%)| 1 Nil L27
2a
Case- | L27 L38(86.1%)| 1 Nil L38
2b
Case- | L38 - - - Blackout
2c

analysis after the tripping of L38 for the system.
Table I shows simulation results based on statistical
decision theory and Table II results are based on
deterministic load flow contingency analysis.

Comparison of Table 1 and 2 concludes that with
deterministic load flow analysis, after tripping of
L38, system leads to blackout (Case-2c in Fig 7)
where as entries in Table 1 and PDF plots in Figs.
8 and 9 clearly indicate Gaussian to non Gaussian
distribution of load flow in transmission line. CDF
plots in Fig. 10 indicating effect of cascade failure
which lead to system blackout after tripping of L38.
Hence, proposed probabilistic framework identified
critical links in cascade failure.

V. CONCLUSIONS

The probabilistic framework for smart grid
cascade failure analysis has been explained in this
paper along with cascading prediction based on
statistical decision theory. Simulation result shows
that a probabilistic distribution of blackout size has
heavy tails where distribution had been no more
Gaussian. Hence, probabilistic load flows are very
much useful for the analysis of variation in nodal
generation and loads over a period of time. load
flow analysis concluded that, one statistical load
flow could replace large number of deterministic
load flows to cover every possible contingency in
the system. Next generation smart grid demands
real time multiple contingency analysis with
self-healing and robust technology. This leads to
various open research areas in the field of smart
grid resilience of cascade failure. Some of the
issues are prediction as well as prevention of
cascade failure with real time data and multiple
line tripping analysis.
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